Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation
نویسندگان
چکیده
The evolution of Tethyan phosphogenesis during the Cretaceous–Eocene is examined to try to explain fluctuations of phosphogenesis through time, and whether or not they reflect long-term changes in ocean circulation or in continental weathering. Twenty-seven time-stratigraphic phosphate levels in various Tethyan sites, covering a time span of about 90 Myr from the Hauterivian to the Eocene, were analyzed for Ca/Ca and Nd/Nd in their carbonate fluorapatite (CFA) fraction. P and Ca accumulation rates and bulk sedimentation rates were quantified throughout the Cretaceous–Eocene Negev sequence to examine how changes in Ca/Ca and Nd/Nd are reflected in the intensity of phosphogenesis. A clear-cut change occurs in εNd(T) and δ Ca and in the rates of P and Ca accumulation and bulk sedimentation through the time analyzed. εNd(T) is much lower in the Hauterivian–Lower Cenomanian (−12.8 to −10.9) than in the Upper Cenomanian– Eocene (−7.8 to −5.9). Much lower δCa values occur in the Hauterivian–Turonian (−0.22 to +0.02) than in the Coniacian– Eocene (+0.23 to +0.40). P accumulation rates in the Negev steeply increase from <200 μmol cm k yr in the Albian– Coniacian to ∼1500 μmol cm k yr in the Campanian, whereas a strong decrease is concomitantly recorded in the rates of Ca accumulation and bulk sedimentation. In addition, distinct εNd(T) values are shown by the phosphorites of the Negev (−6.7 to −6.4) and Egypt (−9.1 to −7.6) during the Campanian, and by those of the Negev (−7.8 to −6.3) and North Africa (−10.1 to −8.9) during the Maastrichtian–Eocene. The culmination of P accumulation rates in the Negev during the Campanian, occurring with a high in εNd(T) and δ Ca and a low in sedimentation rates, indicates that paleoceanographic and paleogeographical factors mostly governed phosphorite accumulation in this area. The abrupt εNd(T) rise after the Cenomanian is attributed to increased incursion of Pacific (radiogenic) water masses into the Tethys, driven by the Late Cretaceous global sea-level rise, the connection between North and South Atlantic, the global post-Santonian cooling, and the progressive widening of the Caribbean threshold, all acting in combination to significantly intensify the Tethyan circumglobal current (TCC). It also reflects a weakening of the continental Nd signal due to a reduction of exposed landmasses caused by increased flooding of continental shelves. High δCa values at those times also point to a decrease in weathering Ca fluxes and expansion of carbonate sedimentation in shelves, both enriching seawater with ⁎ Corresponding author. Fax: +972 2 5380688. E-mail addresses: [email protected] (D. Soudry), [email protected] (C.R. Glenn), [email protected] (Y. Nathan), [email protected] (I. Segal), [email protected] (D. VonderHaar). 1 Fax: +1 808 956 5512. 2 Fax: +972 2 5380688. 0012-8252/$ see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.earscirev.2006.03.005 28 D. Soudry et al. / Earth-Science Reviews 78 (2006) 27–57 isotopically heavy Ca. Deep ocean circulation intensified by the post-Santonian cooling of high latitudes increased P inventory in the Tethys basin, whereas the strengthened TCC and the folded shelf likely resulted in coastal and topographically-induced upwelling, supplying P-rich intermediate waters to southeastern Tethys shelves. Only in the Paleocene–Eocene, following major changes in global circulation produced by narrowing of Tethys and widening of the Atlantic, did phosphogenesis shifts its locus of high intensity to the western (Atlantic) Tethys and West African Atlantic coasts. This change in paleocirculation is expressed by distinctly differing εNd(T) in the Middle East and the North and West African phosphorites, suggesting different oceanic P sources and current systems for these two major groups of phosphorites. Our Nd isotope results further suggest a weaker TCC during the Mid-Cretaceous, becoming more intense in Late Cretaceous times. They also point to the North Pacific Ocean as major source of deep water formation for the intermediate–deep waters in the Tethys Basin during the Late Cretaceous. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Relations between Deep and Shallow Stratigraphic Units of Northern Iraq during Cretaceous
The studied area includes Sulaimani, Erbil and Dohuk Governorates where Cretaceous rocks are well exposed in the High Folded Zone of North and Northeastern Iraq. This area is part of the northwestern boundary of Arabian platform near to Iranian border. In these governorates, the study tries to clarify the relations between deep and shallow stratigraphic units (formation or facies) during Cretac...
متن کاملPetrological and geodynamical constraints of Chaldoran basaltic rocks, NW of Iran: evidence from geochemical characteristics
Chaldoran area in NW of Iran has Mesozoic oceanic crust basement. The studied rocks of this region can be divided into three groups: ophiolitic gabbros and pillow lavas, ophiolitic volcanoclastics and Eocene lava flows. Ophiolitic mafic rocks show continental volcanic arc natures and Eocene lava flow shows OIB-like nature. During the Mesozoic,the Chaldoran region was situated in the active cont...
متن کاملStructural dynamics in northern Atlas of Tunisian, Jendouba area: insights from geology and gravity data
This paper presents a new interpretation of the geometry of Triassic alignment of J. Sidi Mahdi –J. Zitoun in Medjerda Valley Plain (Northern Tunisia) based on detailed analysis of gravity and seismic reflection data. The main results of gravity analysis do not show a distinguish gravity anomaly over Triassic evaporites bodies. The positive gravity anomaly seems to be related to the entire stru...
متن کاملMesozoic basin inversion in Central Alborz, evidence from the evolution of Taleqan-Gajereh-Lar paleograben
This paper presents evidence on Mesozoic inversion of basin bounding faults within the Taleqan-Gajereh-Lar Paleograben (TGLP) in Central Alborz Range. For this purpose, well documented stratigraphy data across the TGLP together with the new acquired structural data on the geometry and kinematics of the paleograben basin bounding faults are utilized. The TGLP has evolved through the Early and Mi...
متن کاملژئوشیمی و سنگزایی مجموعهی افیولیتی هرسین- صحنه (شمال شرق کرمانشاه- غرب ایران) شاهدی بر زمین ساخت جنوب نئوتتیس
Ophiolites of the Zagros orogenic belt are part of the Tethys ophiolites, because of their geographical locations and link the Middle East ophiolites and other Asian ophiolites (e.g. Pakistani and Tibetan) to the Mediterranean ophiolites (e.g. Troodos , Greek and East European). The nature of the Harsin- Sahneh ophiolite (Kermanshah) traditionally identified as one of the Mesozoic southern bran...
متن کامل